Thorasphite, Th2H(AsO4)2(PO4)·6H2O, a New Mineral from Elsmore, New South Wales, Australia

Author:

Elliott Peter12

Affiliation:

1. Department of Earth Sciences, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia

2. South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia

Abstract

ABSTRACT The new mineral species thorasphite, Th2H(AsO4)2(PO4)·6H2O, has been discovered at the abandoned tin deposit at Elsmore, New South Wales, Australia. It occurs as brownish pink to salmon pink, prismatic to acicular crystals up to 0.08 mm in length and 0.002 mm across, associated with jarosite in cavities in a quartz-muscovite matrix. Thorasphite has a white streak and a vitreous luster. The calculated density is 4.185 g/cm3. The mineral is orthorhombic, space group Pbcn, a = 13.673(3), b = 9.925(2), c = 10.222(2) Å, V = 1387.2(5) Å3, and Z = 4. The eight strongest lines in the X-ray powder diffraction pattern are [dobs Å (I) (hkl)]: 8.007 (100) (110), 5.127 (57) (002), 4.934 (71) (020, 211), 4.320 (24) (112), 4.251 (38) (121), 3.225 (22) (130, 312), 3.189 (27) (321), 2.926 (27) (213). Electron microprobe analysis gave (average of n = 9): ThO2 51.35, Na2O 0.17, K2O 0.20, Al2O3 0.35, FeO 0.90, Ce2O3 0.27, As2O5 19.65, P2O5 12.27, SiO2 0.08, Cl 0.20, H2O(calc) 13.58, O=Cl –0.05, Total 98.97 wt.%. On the basis of 18 anions per formula unit, the empirical formula is Th1.72Fe2+0.11Al0.06Na0.05K0.04Ce0.01As1.51P1.53Si0.01O17.95Cl0.05H13.31. The crystal structure has been solved from synchrotron single-crystal data and refined to R1 = 7.48% on the basis of 1432 reflections with Fo > 4σ(Fo). The structure consists of Th2[O12(H2O)4] dimers which link in the c direction by edge-sharing PO4 tetrahedra and corner-sharing AsO4 tetrahedra to form chains along [001]. Chains link by corner-sharing Th[O7(H2O)2] polyhedra and AsO4 tetrahedra, giving rise to a framework hosting channels along [001] which are occupied by H2O molecules.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Mineral Names: Arsenic and Lead;American Mineralogist;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3