Affiliation:
1. Eberhard Karls University Tübingen, Department of Geosciences, Wilhelmstraße 56, 72074 Tübingen, Germany
Abstract
ABSTRACT
The alkaline Loch Borralan intrusion (Assynt Region, NW Highlands of Scotland) consists of a composite arrangement of several ultramafic to felsic plutonic rock bodies which were emplaced around 430 Ma into the Moine Thrust Zone during the Caledonian Orogeny. Some of the Loch Borralan rocks are ultrapotassic and contain pseudoleucite, i.e., a pseudomorph of alkali feldspar and nepheline after leucite. In total, 25 samples have been investigated, representing garnet-bearing pseudoleucite syenites and accompanying rock types such as nepheline-garnet-bearing syenites, alkali feldspar syenites, an amphibole syenite, a biotite-clinopyroxene syenite, and calcite-bearing glimmerites.
Pseudoleucite is always associated with garnet, biotite, orthoclase, and minor clinopyroxene and titanite. Mineral chemical data indicate rather primitive magma compositions with no major differences between the various investigated main rock units. The abundant occurrence of up to 2 cm large, mostly euhedral pseudoleucite crystals and petrological phase considerations suggest that magmatic leucite physically separated from its host magma as a flotation cumulate. Based on our data and a comparison with previous field-based and experimental work, K-rich basanitic to tephriphonolitic melts that originated from a K-enriched mantle source may be parental to these rocks. The high liquidus temperatures at low pressures (e.g., ∼1100 °C at 1 bar PH2O) required to crystallize leucite could have resulted from the ascent of successive melt batches in a composite intrusion. Later melt batches would increase the temperature in earlier, already partially cooled batches, causing an increase in temperature and a decrease in pressure during ascent. The subsequent decomposition of leucite to pseudoleucite is interpreted to result from either dry breakdown or autometasomatism, i.e., involvement of late-magmatic fluids.
Publisher
Mineralogical Association of Canada
Subject
Geochemistry and Petrology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献