The origin of gem spodumene in the Hamadan Pegmatite, Alvand Plutonic Complex, western Iran

Author:

Sheikhi Gheshlaghi Rasoul1,Ghorbani Mansour1,Sepahi Ali Asghar2,Deevsalar Reza3,Nakashima Kazuo4,Shinjo Ryuichi3

Affiliation:

1. Department of Minerals & Groundwater Resources, School of Earth Sciences, Shahid Beheshti University, Shahid Shahriari Square, Daneshjou Boulevard, Shahid Chamran Highway, Tehran, 1983969411, Iran

2. Department of Geology, Bu Ali Sina University, Shahid Fahmideh Street, Hamadan, 65174-33391, Iran

3. Department of Physics and Earth Sciences, University of the Ryukyus, Senbaru-1, Nakagami district, Nishihara town, Okinawa 903-0213, Japan

4. Department of Earth and Environmental Sciences, Faculty of Science, 1 Chome-4-12 Kojirakawamachi, Yamagata University, Yamagata 990-5860, Japan

Abstract

ABSTRACTPegmatite bodies with a simple mineral composition are widespread within the Sanandaj-Sirjan Zone (SaSiZ), Zagros Orogen, Iran; however, gem-bearing pegmatite bodies are rare. There is a pegmatitic vein within the Hamadan garnet (± andalusite ± staurolite) schist adjacent to the Alvand Plutonic Complex (APC), south of Hamedan city (western Iran), in which large crystals of gem spodumene occur together with quartz, amazonite, beryl, tourmaline, and apatite. This spodumene-bearing pegmatite consists of four major zones with slightly different mineral compositions from the border to the core. The wall zone of quartz-rich granitoid and the intermediate zone of alkali granite have trondhjemitic compositions near the quartzolitic gem-bearing core zone. All parts of the vein are peraluminous in composition and exhibit S-type affinity. Two types of spodumene which have been distinguished in the core zone are colorless to very pale yellow and pink, transparent with vitreous luster and inclusion-free (eye clean) under 10× magnification. The different color in these minerals can be attributed to the slightly different chemical compositions, particularly lower Fe/Mn ratios in the pink material. The δ7Li values of the spodumene (+5.58 to +6.57‰) are indicative of the incorporation of middle continental crustal components in their genesis. Change in the mineral assemblage from tourmaline-bearing in the intermediate zone to spodumene + tourmaline in the core zone of the spodumene-bearing pegmatite is consistent with increasing lithium content from the wall zone to the core. Petrographic, geochemical, and isotopic data indicate that partial melting of middle-crustal Al-rich metapelitic source was followed by fractional crystallization to generate these rocks. In this concern, the required Li for the crystallization of spodumene was probably supplied by the breakdown of staurolite of the Hamadan schist and/or subsequent fractional crystallization of the parent magma. The results also demonstrate that the regional tectonic regime exerts a primary control on the occurrence and emplacement of the miarolitic pegmatite in the upper crust and the formation of gem spodumene during late-stage magmatic activities.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3