Significance of viscous coalescence in migmatites of the Assam-Meghalaya Gneissic Complex, eastern India

Author:

Gogoi Bibhuti1,Chauhan Hiredya2

Affiliation:

1. Department of Geology, Cotton University, Hem Baruah Road, Pan Bazar, Guwahati, Assam 781001, India

2. EPMA Laboratory, Department of Geology, Centre of Advanced Study, Banaras HinduUniversity, 7X9R+CP8, Ajagara, Varanasi, Uttar Pradesh 221005, India

Abstract

ABSTRACT The magnetite ocelli preserved in the Chandrapur area of the Assam-Meghalaya Gneissic Complex, eastern India, display viscous coalescence. The viscous coalescence phenomenon generally occurs below a critical capillary number, which is governed by the size of the coalescing droplets. The smaller the size of the coalescing droplets, the greater the possibility that they will exhibit viscous coalescing. From our results we infer that intrusion of younger pegmatitic magma into the much older polyphase deformed quartzofeldspathic gneiss of Chandrapur initiated localized partial melting in the gneissic rocks surrounding the intrusions. This localized partial melting produced small magma pools or leucocratic neosome, which was followed by intermingling between the in situ melt (leucocratic neosome) and external melt (pegmatite), leading to chaotic mixing between the two magmatic phases. Chaotic mixing produced thin veins or filaments of the pegmatitic magma as a result of stretching and folding dynamics. Gradually, the thin filaments underwent capillary instability to produce discrete viscous swirls or ocelli. The ocelli consist of leucocratic minerals like K-feldspar, plagioclase, and quartz, with crystals of magnetite at the center representing magnetite ocelli. The mineralogical assemblage of the ocelli matches that of the pegmatitic rocks. After their formation, some of the smaller magnetite ocelli underwent very gentle collisions due to the effect of capillary and viscous forces. Such collisions produced pairs, clusters, or linear structures that are now preserved in the migmatites of the study area.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3