Redox-controlled chalcophile element geochemistry of the Polaris Alaskan-type mafic-ultramafic complex, British Columbia, Canada

Author:

Milidragovic Dejan123,Nixon Graham T.2,Scoates James S.4,Nott James A.4,Spence Dylan W.4

Affiliation:

1. Geological Survey of Canada, Natural Resources Canada, 1500-605 Robson St., Vancouver, BC, V6B 5J3

2. British Columbia Geological Survey, Ministry of Energy, Mines and Low Carbon Innovation, Box 9333 Stn Prov Govt, Victoria, BC, V8W 9N3

3. Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC, V6T 1Z4

4. Pacific Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 2020-2207 Main Mall, University of British Columbia, Vancouver, BC, V6T 1Z4

Abstract

ABSTRACT The Early Jurassic Polaris Alaskan-type intrusion in the Quesnel accreted arc terrane of the North American Cordillera is a zoned, mafic-ultramafic intrusive body that contains two main styles of magmatic mineralization of petrologic and potential economic significance: (1) chromitite-associated platinum group element (PGE) mineralization hosted by dunite (±wehrlite); and (2) sulfide-associated Cu-PGE-Au mineralization hosted by olivine (±magnetite) clinopyroxenite, hornblendite, and gabbro-diorite. Dunite-hosted PGE mineralization is spatially associated with thin discontinuous layers and schlieren of chromitite and chromitiferous dunite and is characterized by marked enrichments in iridium-subgroup PGE (IPGE) relative to palladium-subgroup PGE (PPGE). Discrete grains of platinum group minerals (PGM) are exceedingly rare, and the bulk of the PGE are inferred to reside in solid solution within chromite±olivine. The absence of Pt-Fe alloys in dunite of the Polaris intrusion is atypical, as Pt-enrichment of dunite-hosted chromitite is widely regarded as a characteristic feature of Alaskan-type intrusions. This discrepancy appears to be consistent with the strong positive dependence of Pt solubility on the oxidation state of sulfide-undersaturated magmas. Through comparison with experimentally determined PGE solubilities, we infer that the earliest (highest temperature) olivine-chromite cumulates of the Polaris intrusion crystallized from a strongly oxidized ultramafic parental magma with an estimated log f(O2) > FMQ+2. Parental magmas with oxygen fugacities more typical of volcanic arc settings [log f(O2) ∼ FMQ to ∼ FMQ+2] are, in turn, considered more favorable for co-precipitation of Pt-Fe alloys with olivine and chromite. More evolved clinopyroxene- and hornblende-rich cumulates of the Polaris intrusion contain low abundances of disseminated magmatic sulfides, consisting of pyrrhotite and chalcopyrite with minor pentlandite, pyrite, and rare bornite (≤12 wt.% total sulfides), which occur interstitially or as polyphase inclusions in silicates and oxides. The sulfide-bearing rocks are characterized by strong primitive mantle-normalized depletions in IPGE and enrichments in Cu-PPGE-Au, patterns that resemble those of other Alaskan-type intrusions and primitive arc lavas. The absolute abundances and sulfur-normalized whole-rock concentrations (Ci/S, serving as proxy for sulfide metal tenor) of chalcophile elements, including Cu/S, in sulfide-bearing rocks are highest in olivine clinopyroxenite. Sulfide saturation in the relatively evolved magmas of the Polaris intrusion, and Alaskan-type intrusions in general, appears to be intimately tied to the appearance of magnetite. Fractional crystallization of magnetite during the formation of olivine clinopyroxenite at Polaris resulted in reduction of the residual magma to log f(O2) ≤ FMQ+2, leading to segregation of an immiscible sulfide melt with high Cu/Fe and Cu/S, and high PGE and Au tenors. Continued fractionation resulted in sulfide melts that were progressively more depleted in precious and base chalcophile metals. The two styles of PGE mineralization in the Polaris Alaskan-type intrusion are interpreted to reflect the evolution of strongly oxidized, hydrous ultramafic parental magma(s) through intrinsic magmatic fractionation processes that potentially promote sulfide saturation in the absence of wallrock assimilation.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3