Development of Tourmaline-Bearing Lithologies of the Peraluminous Tusaquillas Composite Granitic Batholith, NW Argentina: Evidence from Quartz and Tourmaline

Author:

Henry Darrell J.1,Zappettini Eduardo O.2,Dutrow Barbara L.1

Affiliation:

1. Department of Geology and Geophysics, Howe-Russell-Kniffen Geoscience Complex, Louisiana State University, Baton Rouge, Louisiana 70803, USA

2. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Av. General Paz 5445 (colectora), Edif. 25, San Martín, Provincia de Buenos Aires, Argentina

Abstract

ABSTRACT Textural and chemical characteristics of quartz and tourmaline found in tourmaline-rich orbicules, greisens, pegmatites, and tourmalinite segregations associated with the peraluminous leucogranitic Tusaquillas Batholith Complex of northwest Argentina exhibit both magmatic and hydrothermal features. Imaging of quartz by optical cathodoluminescence and scanning electron microscopy cathodoluminescence shows three stages of development. Stage-1 quartz, considered magmatic, develops as large grains in pegmatites that have optical cathodoluminescence homogeneity; as anhedral relict grains partially replaced by stage-2 hydrothermal quartz in tourmalinite segregations, orbicules, and greisens; and as idiomorphic grains with irregularly spaced oscillatory zoning seen in scanning electron microscopy cathodoluminescence in orbicules. Stage-2 quartz, interpreted as hydrothermal, partially replaces stage-1 quartz and generation-1 tourmaline in most lithologies. Stage-3 quartz, a late hydrothermal stage, occurs in all lithologies as weakly luminescing quartz in healed quartz fractures with abundant fluid inclusions, commonly associated with the crystallization of irregular late-stage tourmaline. Multiple generations of tourmaline span magmatic to hydrothermal phases of development. In all lithologies, generation-1 tourmaline is compositionally similar: highly aluminous (range of average values of Altotal = 6.31–6.95 apfu), markedly Fe- and X□-rich (XMg = 0.01–0.17, X□= 0.21–0.51), and having variable F and WO (F = 0.00–0.57 apfu, WO = 0.00–0.40). Generation-1 tourmaline is interpreted as magmatic with compositions reflecting the chemical environment of the host lithologies and with compositional zoning patterns characteristic of both closed- and open-system behavior, possibly related to the transition to subsolidus conditions. Similar to generation-1 tourmaline, later-stage generations-2 and -3 tourmaline compositions are highly aluminous (range of average values of Altotal = 6.38–6.79 apfu), markedly Fe- and X□-rich (XMg = 0.00–0.20, X□= 0.28–0.40), and variably F- and WO-enriched (F = 0.07–0.57 apfu, WO = 0.00–0.31), but notably poorer in Ca and Ti (<0.01 apfu). The later-stage tourmaline is considered to have developed during the subsolidus hydrothermal conditions. External chemical contributions to tourmaline compositions from the country rocks appear to be minor to nonexistent. The X-site and W-site occupancies of the late-generation tourmaline implies subsolidus invasive alkaline, saline aqueous fluids with high Na but minimal Ca contents derived from the crystallizing leucogranites and related rocks across the solidus-to-subsolidus transition.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3