On the Attributes of Mineral Paragenetic Modes

Author:

Hazen Robert M.1,Morrison Shaunna M.1,Prabhu Anirudh1,Williams Jason R.1,Wong Michael L.1,Krivovichev Sergey V.2,Bermanec Marko3

Affiliation:

1. Earth and Planets Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road NW, Washington DC 20015, USA

2. Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity 184200, Russia

3. Institute of Geological Sciences, Universität Bern, Baltzerstrasse 1+3, CH-3012 Bern, Switzerland

Abstract

Abstract The mineral kingdom has experienced dramatic increases in diversity and complexity through billions of years of planetary evolution as a consequence of a sequence of physical, chemical, and biological processes. Each new formational environment, or “mineral paragenetic mode,” has its own characteristic attributes, including the stage of mineral evolution and geological age, ranges of T, P, duration of formation events, and other environmental influences on mineral formation. Furthermore, the minerals associated with each paragenetic mode have a wide range of average properties, including hardness, density, and chemical and structural complexity. A survey of attributes of 57 mineral paragenetic modes representing the full range of mineral-forming processes reveals systematic trends, including: (1) minerals documented from older paragenetic processes are systematically harder on average than those from more recent processes; (2) minerals from paragenetic modes formed at lower T (notably <500 K) display greater average structural complexity than those formed at high T (especially >1000 K); and (3) minerals from paragenetic modes that display greater average chemical complexity are systematically less dense than those from modes with lesser average chemical complexity. In addition, minerals formed in anhydrous environments and/or by abiotic processes are, on average, significantly denser and harder than those formed in hydrous environments and/or by biotic processes.

Publisher

Mineralogical Association of Canada

Reference186 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3