microRNA-seq of cartilage reveals an overabundance of miR-140-3p which contains functional isomiRs

Author:

Woods Steven,Charlton Sarah,Cheung Kat,Hao Yao,Soul Jamie,Reynard Louise N.,Crowe Natalie,Swingler Tracey E.,Skelton Andrew J.,Piróg Katarzyna A.,Miles Colin G.,Tsompani Dimitra,Jackson Robert M.,Dalmay Tamas,Clark Ian M.,Barter Matt J.,Young David A.ORCID

Abstract

miR-140 is selectively expressed in cartilage. Deletion of the entire Mir140 locus in mice results in growth retardation and early-onset osteoarthritis-like pathology; however, the relative contribution of miR-140-5p or miR-140-3p to the phenotype remains to be determined. An unbiased small RNA sequencing approach identified miR-140-3p as significantly more abundant (>10-fold) than miR-140-5p in human cartilage. Analysis of these data identified multiple miR-140-3p isomiRs differing from the miRBase annotation at both the 5′ and 3′ end, with >99% having one of two seed sequences (5′ bases 2–8). Canonical (miR-140-3p.2) and shifted (miR-140-3p.1) seed isomiRs were overexpressed in chondrocytes and transcriptomics performed to identify targets. miR-140-3p.1 and miR-140-3p.2 significantly down-regulated 694 and 238 genes, respectively, of which only 162 genes were commonly down-regulated. IsomiR targets were validated using 3′UTR luciferase assays. miR-140-3p.1 targets were enriched within up-regulated genes in rib chondrocytes of Mir140-null mice and within down-regulated genes during human chondrogenesis. Finally, through imputing the expression of miR-140 from the expression of the host gene WWP2 in 124 previously published data sets, an inverse correlation with miR-140-3p.1 predicted targets was identified. Together these data suggest the novel seed containing isomiR miR-140-3p.1 is more functional than original consensus miR-140-3p seed containing isomiR.

Funder

Oliver Bird Rheumatism Programme

Medical Research Council and Versus Arthritis as part of the MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing

Versus Arthritis

the JGW Patterson Foundation

The Dunhill Medical Trust

the NIHR Newcastle Biomedical Research

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3