Two independently selected capping ribozymes share similar substrate requirements

Author:

Zaher Hani S.,Watkins R. Ammon,Unrau Peter J.

Abstract

We report the isolation and characterization of a second capping ribozyme, called 6.17. This ribozyme has substrate requirements that are very similar to a previously isolated capping ribozyme called Iso6. Both ribozymes promote capping and cap exchange reactions with a broad range of nucleotide substrates. The ribozymes mediate a reaction where the terminal phosphate of the nucleotide substrate attacks the α-phosphate found at the ribozyme's 5′ terminus. This reaction involves the release of pyrophosphate during capping or a nucleotide during cap exchange. The second-order rate constants for 6.17 and Iso6 depend strongly on the length of the phosphate group found on the nucleotide substrate. Nucleoside diphosphates or triphosphates are efficiently utilized, while monophosphates are used ∼20-fold less efficiently by both ribozymes. These ribozymes also have rates that increase as pH is decreased. Despite these similarities, the ribozymes are not identical and 6.17 performs optimally when incubated with divalent magnesium ions, while Iso6 displays a preference for calcium ions. Further, the ribozymes have globally different secondary structures; 6.17 has a complicated pseudoknot structure consisting of five helical elements, while Iso6 likely consists of four helical elements. We hypothesize that capping proceeds via an invariant phosphate dependent mechanism that imposes a nearly identical “catalytic fingerprint” on these two distinct ribozymes.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nucleic Acid‐Catalyzed RNA Ligation and Labeling;Ribozymes;2021-08-06

2. Phosphoryl Transfer Ribozymes;Ribozymes;2021-08-06

3. Catalytic RNA;eLS;2021-04-27

4. RNA | Ribozymes and Evolution;Encyclopedia of Biological Chemistry III;2021

5. Promiscuous Ribozymes and Their Proposed Role in Prebiotic Evolution;Chemical Reviews;2020-02-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3