Computational prediction of Caenorhabditis box H/ACA snoRNAs using genomic properties of their host genes

Author:

Wang Paul Po-Shen,Ruvinsky Ilya

Abstract

Identification of small nucleolar RNAs (snoRNAs) in genomic sequences has been challenging due to the relative paucity of sequence features. Many current prediction algorithms rely on detection of snoRNA motifs complementary to target sites in snRNAs and rRNAs. However, recent discovery of snoRNAs without apparent targets requires development of alternative prediction methods. We present an approach that combines rule-based filters and a Bayesian Classifier to identify a class of snoRNAs (H/ACA) without requiring target sequence information. It takes advantage of unique attributes of their genomic organization and improved species-specific motif characterization to predict snoRNAs that may otherwise be difficult to discover. Searches in the genomes of Caenorhabditis elegans and the closely related Caenorhabditis briggsae suggest that our method performs well compared to recent benchmark algorithms. Our results illustrate the benefits of training gene discovery engines on features restricted to particular phylogenetic groups and the utility of incorporating diverse data types in gene prediction.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3