Functional analysis of mRNA scavenger decapping enzymes

Author:

LIU SHIN-WU,JIAO XINFU,LIU HUDAN,GU MEIGANG,LIMA CHRISTOPHER D.,KILEDJIAN MEGERDITCH

Abstract

Eukaryotic cells primarily utilize exoribonucleases and decapping enzymes to degrade their mRNA. Two major decapping enzymes have been identified. The hDcp2 protein catalyzes hydrolysis of the 5′ cap linked to an RNA moiety, whereas the scavenger decapping enzyme, DcpS, functions on a cap structure lacking the RNA moiety. DcpS is a member of the histidine triad (HIT) family of hydrolases and catalyzes the cleavage of m7GpppN. HIT proteins are homodimeric and contain two conserved 100-aminoacid HIT fold domains with independent active sites that are each sufficient to bind and hydrolyze cognate substrates. We carried out a functional characterization of the DcpS enzyme and demonstrate that unlike previously described HIT proteins, DcpS is a modular protein that requires both the core HIT fold at the carboxylterminus and sequences at the amino-terminus of the protein for cap binding and hydrolysis. Interestingly, DcpS can efficiently compete for and hydrolyze the cap structure even in the presence of excess eIF4E, implying that DcpS could function to alleviate the accumulation of complexes between eIF4E and cap structure that would otherwise accumulate following mRNA decay. Using immunofluorescence microscopy, we demonstrate that DcpS is predominantly a nuclear protein, with low levels of detected protein in the cytoplasm. Furthermore, analysis of the endogenous hDcp2 protein reveals that in addition to the cytoplasmic foci, it is also present in the nucleus. These data reveal that both decapping enzymes are contained in the nuclear compartment, indicating that they may fulfill a greater function in the nucleus than previously appreciated.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3