U2AF2 binds IL7R exon 6 ectopically and represses its inclusion

Author:

Schott Geraldine,Galarza-Muñoz Gaddiel,Trevino Noe,Chen XiaotingORCID,Weirauch Matthew T.,Gregory Simon G.,Bradrick Shelton S.,Garcia-Blanco Mariano A.ORCID

Abstract

Interleukin 7 receptor α-chain is crucial for the development and maintenance of T cells and genetically associated with autoimmune disorders including multiple sclerosis (MS). Exon 6 of IL7R encodes for its transmembrane domain and regulated by alternative splicing (AS): Inclusion or skipping of IL7R exon 6 results in membrane-bound or soluble IL7R isoforms, respectively. We previously identified SNP rs6897932 in IL7R exon 6, associated with MS risk, and showed that the risk allele (C) results in increased exon skipping and elevated sIL7R. Elevated levels of sIL7R have been shown to exacerbate the disease in the experimental autoimmune encephalomyelitis mouse model of MS. Here we report two mechanisms by which IL7R exon 6 is controlled. A competition between PTBP1 and U2AF2 at the polypyrimidine tract (PPT) of intron 5, and an unexpected U2AF2-mediated assembly of splicing factors in the exon. We noted the presence of a branchpoint sequence (BPS) (TACTAAT or TACTAAC) within exon 6, which is stronger with the C allele. Importantly, the BPS is followed by a PPT and we conjectured that silencing could be mediated by binding of U2AF2 to that tract. Here, we show that evolutionary conservation of the exonic PPT correlates well with the degree of AS of exon 6 in two nonhuman primate species and that U2AF2 binding to this PPT recruits U2 snRNP components to the exon. These observations provide the first explanation for the stronger silencing of IL7R exon 6 with the disease-associated C allele at rs6897932.

Funder

National Center for Research Resources

Office of Research Infrastructure Programs/OD

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3