Abstract
In recent years, the advances in single-cell RNA-seq techniques have enabled us to perform large-scale transcriptomic profiling at single-cell resolution in a high-throughput manner. Unsupervised learning such as data clustering has become the central component to identify and characterize novel cell types and gene expression patterns. In this study, we review the existing single-cell RNA-seq data clustering methods with critical insights into the related advantages and limitations. In addition, we also review the upstream single-cell RNA-seq data processing techniques such as quality control, normalization, and dimension reduction. We conduct performance comparison experiments to evaluate several popular single-cell RNA-seq clustering approaches on simulated and multiple single-cell transcriptomic data sets.
Funder
National Natural Science Foundation of China
Shenzhen Research Institute
City University of Hong Kong
Strategic Interdisciplinary Research Grant of City University of Hong Kong
Health and Medical Research Fund
the Food and Health Bureau
The Government of the Hong Kong Special Administrative Region
Publisher
Cold Spring Harbor Laboratory
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献