RNA sequence and secondary structure participate in high-affinity CsrA–RNA interaction

Author:

DUBEY ASHOK K.,BAKER CAROL S.,ROMEO TONY,BABITZKE PAUL

Abstract

The global Csr regulatory system controls bacterial gene expression post-transcriptionally. CsrA of Escherichia coli is an RNA binding protein that plays a central role in repressing several stationary phase processes and activating certain exponential phase functions. CsrA regulates translation initiation of several genes by binding to the mRNA leaders and blocking ribosome binding. CsrB and CsrC are noncoding regulatory RNAs that are capable of sequestering CsrA and antagonizing its activity. Each of the known target transcripts contains multiple CsrA binding sites, although considerable sequence variation exists among these RNA targets, with GGA being the most highly conserved element. High-affinity RNA ligands containing single CsrA binding sites were identified from a combinatorial library using systematic evolution of ligands by exponential enrichment (SELEX). The SELEX-derived consensus was determined as RUACARGGAUGU, with the ACA and GGA motifs being 100% conserved and the GU sequence being present in all but one ligand. The majority (51/55) of the RNAs contained GGA in the loop of a hairpin within the most stable predicted structure, an arrangement similar to several natural CsrA binding sites. Strikingly, the identity of several nucleotides that were predicted to form base pairs in each stem were 100% conserved, suggesting that primary sequence information was embedded within the base-paired region. The affinity of CsrA for several selected ligands was measured using quantitative gel mobility shift assays. A mutational analysis of one selected ligand confirmed that the conserved ACA, GGA, and GU residues were critical for CsrA binding and that RNA secondary structure participates in CsrA–RNA recognition.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3