Decreased aminoacylation in pathology-related mutants of mitochondrial tRNATyr is associated with structural perturbations in tRNA architecture

Author:

Bonnefond Luc,Florentz Catherine,Giegé Richard,Rudinger-Thirion Joëlle

Abstract

A growing number of human pathologies are ascribed to mutations in mitochondrial tRNA genes. Here, we report biochemical investigations on three mt-tRNATyr molecules with point substitutions associated with diseases. The mutations occur in the atypical T- and D-loops at positions homologous to those involved in the tertiary interaction network of canonical tRNAs. They do not correspond to tyrosine identity positions and likely do not contact the mitochondrial tyrosyl-tRNA synthetase during the aminoacylation process. The impact of these substitutions on mt-tRNATyr tyrosylation and structure was investigated using the corresponding tRNA transcripts. In vitro tyrosylation efficiency is decreased 600-fold for mutant A22G (mitochondrial gene mutation T5874C), 40-fold for G15A (C5877T), and is without significant effect on U54C (A5843G). Comparative solution probings with lead and nucleases on mutant and wild-type tRNATyr molecules reveal a greater sensitivity to single-strand specific probes for mutants G15A and A22G. For both transcripts, the mutation triggers a structural destabilization in the D-loop that propagates toward the anticodon arm and thus hinders efficient tyrosylation. Further probing analysis combined with phylogenetic data support the participation of G15 and A22 in the tertiary network of human mt-tRNATyr via nonclassical Watson–Crick G15–C48 and G13–A22 pairings. In contrast, the pathogenic effect of the tyrosylable mutant U54C, where structure is only marginally affected, has to be sought at another level of the tRNATyr life cycle.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3