5′ Exon replacement and repair by spliceosome-mediated RNA trans-splicing

Author:

MANSFIELD S. GARY,CLARK REBECCA HAWKINS,PUTTARAJU M.,KOLE JOLANTA,COHN JONATHAN A.,MITCHELL LLOYD G.,GARCIA-BLANCO MARIANO A.

Abstract

Spliceosome-mediated RNA trans-splicing (SMaRT) has been used previously to reprogram mutant endogenous CFTR and factor VIII mRNAs in human epithelial cell and tissue models and knockout mice, respectively. Those studies used 3′ exon replacement (3′ER); a process in which the distal portion of RNA is reprogrammed. Here, we also show that the 5′ end of mRNA can be completely rewritten by 5′ER. For proof-of-concept, and to test whether 5′ER could generate functional CFTR, we generated a mutant minigene target containing CFTR exons 10–24 (ΔF508) and a mini-intron 10, and a pretrans-splicing molecule (targeted to intron 10) containing CFTR exons 1–10 (+F508), and tested these two constructs in 293T cells for anion efflux transport. Cells cotransfected with target and PTM showed a consistent increase in anion efflux, but there was no response in control cells that received PTM or target alone. Using a LacZ reporter system to accurately quantify trans-splicing efficiency, we tested several unique PTM designs. These studies provided two important findings as follows: (1) efficient trans-splicing can be achieved by binding the PTM to different locations in the target, and (2) relatively few changes in PTM design can have a profound impact on trans-splicing activity. Tethering the PTM close to the target 3′ splice site (as opposed to the donor site) and inserting an intron in the PTM coding resulted in a 65-fold enhancement of LacZ activity. These studies demonstrate that (1) SMaRT can be used to reprogram the 5′ end of mRNA, and (2) efficiency can be improved substantially.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Canonical Splicing and Its Implications in Brain Physiology and Cancer;International Journal of Molecular Sciences;2022-03-04

2. The development and improvement of ribonucleic acid therapy strategies;Molecular Therapy - Nucleic Acids;2021-12

3. Therapeutic applications of trans-splicing;British Medical Bulletin;2020-10-03

4. Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing;International Journal of Molecular Sciences;2020-05-30

5. SMaRT for Therapeutic Purposes;Methods in Molecular Biology;2019-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3