Combinatorial minimization and secondary structure determination of a nucleotide synthase ribozyme

Author:

CHAPPLE KELLY E.,BARTEL DAVID P.,UNRAU PETER J.

Abstract

We previously isolated from random sequences ribozymes able to form a glycosidic linkage between a ribose sugar and 4-thiouracil in a reaction that mimics protein-catalyzed nucleotide synthesis. Here we report on two serial in vitro selection experiments that defined the core motif of one of the nucleotide synthase ribozymes and provided improved versions of this ribozyme. The first selection experiment started from a degenerate sequence pool based on the previously isolated sequence and used a selection-amplification protocol that allowed the sequence requirements at the 3′ terminus of the ribozyme to be interrogated. Comparing the active sequences identified in this experiment revealed the complicated secondary structure of the nucleotide synthase ribozyme. A second selection was then performed to remove nonessential sequence from the ribozyme. This selection started with a pool with variation introduced in both the sequence and the length of the nonconserved loops and joining regions. This pool was generated using a partial reblocking/deblocking strategy on a DNA synthesizer, allowing the combinatorial synthesis of both point deletions and point substitutions. The consensus ribozyme motif that emerged was an ~71 nt pseudoknot structure with five stems and two important joining segments. Comparative sequence analysis and a cross-linking experiment point to the probable location of nucleotide synthesis. The prototype isolate from the second selection was nearly 35 times more efficient than the initial isolate and at least 108 times more efficient than an upper limit of an as-yet undetectable uncatalyzed reaction, supporting the idea that RNA-catalyzed nucleotide synthesis might have been important in an RNA world.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3