Abstract
Transfer RNA (tRNA) is an adaptor molecule indispensable for assigning amino acids to codons on mRNA during protein synthesis. 2-thiouridine (s2U) derivatives in the anticodons (position 34) of tRNAs for glutamate, glutamine, and lysine are post-transcriptional modifications essential for precise and efficient codon recognition in all organisms. s2U34 is introduced either by (i) bacterial MnmA/eukaryote mitochondrial Mtu1 or (ii) eukaryote cytosolic Ncs6/archaeal NcsA, and the latter enzymes possess iron-sulfur (Fe–S) cluster. Here, we report the identification of novel-type MnmA homologs containing three conserved Cys residues, which could support Fe–S cluster binding and catalysis, in a broad range of bacteria, including thermophiles, Cyanobacteria, Mycobacteria, Actinomyces, Clostridium, and Helicobacter. Using EPR spectroscopy, we revealed that Thermus thermophilus MnmA (TtMnmA) contains an oxygen-sensitive [4Fe–4S]-type cluster. Efficient in vitro formation of s2U34 in tRNALys and tRNAGln by holo-TtMnmA occurred only under anaerobic conditions. Mutational analysis of TtMnmA suggested that the Fe–S cluster is coordinated by the three conserved Cys residues (Cys105, Cys108, and Cys200), and is essential for its activity. Evolutionary scenarios for the sulfurtransferases, including the Fe–S cluster containing Ncs6/NcsA s2U thiouridylases and several distantly related sulfurtransferases, are proposed.
Funder
Grants-in-Aid for Scientific Research
Ministry of Education, Culture, Sports, Science, and Technology of Japan
Precise Measurement Technology Promotion Foundation
Takeda Science Foundation
Sumitomo Electric Group CSR Foundation
Publisher
Cold Spring Harbor Laboratory
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献