Author:
Fu Yang,Deiorio-Haggar Kaila,Soo Mark W.,Meyer Michelle M.
Abstract
Approximately half the transcripts encoding ribosomal proteins in Escherichia coli include a structured RNA motif that interacts with a specific ribosomal protein to inhibit gene expression, thus allowing stoichiometric production of ribosome components. However, many of these RNA structures are not widely distributed across bacterial phyla. It is increasingly common for RNA motifs associated with ribosomal protein genes to be identified using comparative genomic methods, yet these are rarely experimentally validated. In this work, we characterize one such motif that precedes operons containing rpsF and rpsR, which encode ribosomal proteins S6 and S18. This RNA structure is widely distributed across many phyla of bacteria despite differences within the downstream operon, and examples are present in both E. coli and Bacillus subtilis. We demonstrate a direct interaction between an example of the RNA from B. subtilis and an S6:S18 complex using in vitro binding assays, verify our predicted secondary structure, and identify a putative protein-binding site. The proposed binding site bears a strong resemblance to the S18 binding site within the 16S rRNA, suggesting molecular mimicry. This interaction is a valuable addition to the canon of ribosomal protein mRNA interactions. This work shows how experimental verification translates computational results into concrete knowledge of biological systems.
Publisher
Cold Spring Harbor Laboratory
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献