Conformational analysis of the telomerase RNA pseudoknot hairpin by Raman spectroscopy

Author:

Reipa Vytas,Niaura Gediminas,Atha Donald H.

Abstract

We have measured the temperature-dependent Raman spectra of two 30-mer ribonucleotides that represent the wild-type (WT) and dyskeratosis congenita (DKC) mutant (MT) GC (107–108) → AG structures of the pseudoknot hairpin region of human telomerase RNA. We have used these structures, previously characterized by UV-melting and NMR, as a model system for our Raman investigation. We observe that Raman hypochromism of vibrational bands, previously assigned to specific bases or conformational RNA markers, reflect temperature-dependent alterations in the pentaloop and stem structures of these two oligonucleotides. We also observe that the intense νs(O-P-O) band at 812 cm−1 indicates the presence of A-form backbone structure at relatively low temperatures in both the WT and MT RNA sequences. The mutation induces a decrease in the intensity of the uridine (rU) band at 1244 cm−1 associated with C2′-endo/anti ribose conformation in the pentaloop. Two transition temperatures (Tm) were determined from the analysis of Raman difference intensity-temperature profiles of the 1256 cm−1 band, which is associated with vibrations of cytidine (rC) residues, in particular, the C2′-endo/anti ribose conformation (Tm1 = 23.6 ± 1.6°C for WT and 19.7 ± 2.8°C for MT; Tm2 = 68.9 ± 1.8°C for WT and 70.9 ± 1.1°C for MT). From these results we can conclude that the DKC mutant 30-mer exhibits a lower stability in the pentaloop region and a slightly higher stability in the stem region than the WT 30-mer. This demonstrates that Raman bands, previously assigned to specific bases or conformational RNA markers, can be used to probe local structural features of the telomerase pseudoknot hairpin sequence.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3