Abstract
The translation of rpoS (σS), the general stress/stationary phase sigma factor, is tightly regulated at the post-transcriptional level by several factors via mechanisms that are not clearly defined. One of these factors is MiaA, the enzyme necessary for the first step in the N6-isopentyl-2-thiomethyladenosinemethyladenosine 37 (ms2i6A37) tRNA modification. We tested the hypothesis that an elevated UUX-Leucine/total leucine codon ratio can be used to identify transcripts whose translation would be sensitive to loss of the MiaA-dependent modification. We identified iraP as another candidate MiaA-sensitive gene, based on the UUX-Leucine/total leucine codon ratio. An iraP-lacZ fusion was significantly decreased in the absence of MiaA, consistent with our predictive model. To determine the role of MiaA in UUX-Leucine decoding in rpoS and iraP, we measured β-galactosidase-specific activity of miaA−rpoS and iraP translational fusions upon overexpression of leucine tRNAs. We observed suppression of the MiaA effect on rpoS, and not iraP, via overexpression of tRNALeuX but not tRNALeuZ. We also tested the hypothesis that the MiaA requirement for rpoS and iraP translation is due to decoding of UUX-Leucine codons within the rpoS and iraP transcripts, respectively. We observed a partial suppression of the MiaA requirement for rpoS and iraP translational fusions containing one or both UUX-Leucine codons removed. Taken together, this suggests that MiaA is necessary for rpoS and iraP translation through proper decoding of UUX-Leucine codons and that rpoS and iraP mRNAs are both modification tunable transcripts (MoTTs) via the presence of the modification.
Funder
National Institute of General Medical Sciences of the National Institutes of Health
National Science Foundation
National Institutes of Health
Publisher
Cold Spring Harbor Laboratory
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献