Splicing of designer exons reveals unexpected complexity in pre-mRNA splicing

Author:

Zhang Xiang H.-F.,Arias Mauricio A.,Ke Shengdong,Chasin Lawrence A.

Abstract

Pre-messengerRNA (mRNA) splicing requires the accurate recognition of splice sites by the cellular RNA processing machinery. In addition to sequences that comprise the branchpoint and the 3′ and 5′ splice sites, the cellular splicing machinery relies on additional information in the form of exonic and intronic splicing enhancer and silencer sequences. The high abundance of these motifs makes it difficult to investigate their effects using standard genetic perturbations, since their disruption often leads to the formation of yet new elements. To lessen this problem, we have designed synthetic exons comprised of multiple copies of a single prototypical exonic enhancer and a single prototypical exonic silencer sequence separated by neutral spacer sequences. The spacer sequences buffer the exon against the formation of new elements as the number and order of the original elements are varied. Over 100 such designer exons were constructed by random ligation of enhancer, silencer, and neutral elements. Each exon was positioned as the central exon in a 3-exon minigene and tested for exon inclusion after transient transfection. The level of inclusion of the test exons was seen to be dependent on the provision of enhancers and could be decreased by the provision of silencers. In general, there was a good quantitative correlation between the proportion of enhancers and splicing. However, widely varying inclusion levels could be produced by different permutations of the enhancer and silencer elements, indicating that even in this simplified system splicing decisions rest on complex interplays of yet to be determined parameters.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Reference32 articles.

1. Tuning genetic control through promoter engineering

2. Mechanisms of Alternative Pre-Messenger RNA Splicing

3. Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA;Bourgeois,;Prog. Nucleic Acid Res. Mol. Biol.,2004

4. Influence of RNA Secondary Structure on the Pre-mRNA Splicing Process

5. Splicing mutants and their second-site suppressors at the dihydrofolate reductase locus in Chinese hamster ovary cells;Carothers,;Mol. Cell. Biol.,1993

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3