Study of the RNA splicing kinetics via in vivo 5-ethynyl uridine labelling

Author:

Bolikhova Anastasiia K,Buyan Andrey I,Mariasina Sofia S,Rudenko Alexander Y,Chekh Daria S,Mazur Alexander M,Prokhortchouk Egor B,Dontsova Olga A,Sergiev Petr VORCID

Abstract

Splicing, a process of intron removal from eukaryotic RNA transcripts, is an important step of gene expression in all eukaryotes. Splice sites might be used with different efficiency giving rise to alternative splicing products. At the same time, splice sites might be utilised at a variable rate. We used 5-ethynyl uridine labelling to sequence a nascent transcriptome of HeLa cells and deduce the rate of splicing for each donor and acceptor splice site. The following correlation analysis allowed us to assess a correspondence of primary transcript features with the rate of splicing. Some dependencies we revealed were anticipated, such as splicing rate decrease with a decreased complementarity of donor splice site to U1 and acceptor sites to U2 snRNAs, or an acceleration of donor site usage if an upstream acceptor site is located at a shorter distance. Other dependencies were more surprising, like a negative influence of a distance to the 5' end on the rate of acceptor splicing site utilization, or the differences in splicing rate between long, short and RBM17-dependent introns. We also observed a deceleration of last intron splicing with an increase of the distance to the polyA site, which might be explained by a cooperativity of the splicing and polyadenylation. In addition, we performed the analysis of splicing kinetics of SF3B4 knockdown cells which suggested the impairment of U2 snRNA recognition step. As a result, we deconvoluted the effects of several examined features on the splicing rate into a single regression model. The data obtained here are useful for further studies in the field as it provides general splicing rate dependencies as well as helps justify the existence of slowly removed splice sites, e.g. to ensure alternative splicing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3