Regulatory element identification in subsets of transcripts: Comparison and integration of current computational methods

Author:

Fan Danhua,Bitterman Peter B.,Larsson Ola

Abstract

Regulatory elements in mRNA play an often pivotal role in post-transcriptional regulation of gene expression. However, a systematic approach to efficiently identify putative regulatory elements from sets of post-transcriptionally coregulated genes is lacking, hampering studies of coregulation mechanisms. Although there are several analytical methods that can be used to detect conserved mRNA regulatory elements in a set of transcripts, there has been no systematic study of how well any of these methods perform individually or as a group. We therefore compared how well three algorithms, each based on a different principle (enumeration, optimization, or structure/sequence profiles), can identify elements in unaligned untranslated sequence regions. Two algorithms were originally designed to detect transcription factor binding sites, Weeder and BioProspector; and one was designed to detect RNA elements conserved in structure, RNAProfile. Three types of elements were examined: (1) elements conserved in both primary sequence and secondary structure; (2) elements conserved only in primary sequence; and (3) microRNA targets. Our results indicate that all methods can uniquely identify certain known RNA elements, and therefore, integrating the output from all algorithms leads to the most complete identification of elements. We therefore developed an approach to integrate results and guide selection of candidate elements from several algorithms presented as a web service (https://dbw.msi.umn.edu:8443/recit). These findings together with the approach for integration can be used to identify candidate elements from genome-wide post-transcriptional profiling data sets.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anota2seq Analysis for Transcriptome-Wide Studies of mRNA Translation;Methods in Molecular Biology;2022

2. DynaMIT: the dynamic motif integration toolkit;Nucleic Acids Research;2015-08-07

3. Evolutionary Dynamics of GLD-1–mRNA Complexes in Caenorhabditis Nematodes;Genome Biology and Evolution;2014-12-09

4. eIF4E and Its Binding Proteins;Translation and Its Regulation in Cancer Biology and Medicine;2014

5. Toward a Genome-Wide Landscape of Translational Control;Cold Spring Harbor Perspectives in Biology;2012-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3