Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators and play important roles in cardiac development and congenital heart disease. In a previous study, we identified a novel lncRNA, Ppp1r1b, with expression highly correlated with myogenesis. However, the molecular mechanism that underlies Ppp1r1b-lncRNA function in myogenic regulation is unknown. By silencing Ppp1r1b-lncRNA, mouse C2C12 and human skeletal myoblasts failed to develop fully differentiated myotubes. Myogenic differentiation was also impaired in PPP1R1B-lncRNA deficient human-induced pluripotent stem cell-derived cardiomyocytes (hiPSCs-CMs). The expression of myogenic transcription factors, including MyoD, Myogenin, and Tbx5, as well as sarcomere proteins, was significantly suppressed in Ppp1r1b-lncRNA inhibited myoblast cells and neonatal mouse heart. Histone modification analysis revealed increased H3K27 tri-methylation at MyoD1 and Myogenin promoters in GapmeR treated C2C12 cells. Furthermore, Ppp1r1b-lncRNA was found to bind to Ezh2, and chromatin isolation by RNA purification (ChIRP) assay revealed enriched interaction of Ppp1r1b-lncRNA with Myod1 and Tbx5 promoters, suggesting that Ppp1r1b-lncRNA induces transcription of myogenic transcription factors by interacting with the polycomb repressive complex 2 (PRC2) at the chromatin interface. Correspondingly, the silencing of Ppp1r1b-lncRNA increased EZH2 binding at promoter regions of myogenic transcription factors. Therefore, our results suggest that Ppp1r1b-lncRNA promotes myogenic differentiation through competing for PRC2 binding with chromatin of myogenic master regulators during heart and skeletal muscle development.
Funder
Stanford Cardiovascular Institute
UCLA TPLC and the UCLA Congenital Heart Defects-BioCore
Clinical Genomics Center at the UCLA Institute of Precision Health, and the Animal Physiology Core at the UCLA Division of Molecular Medicine
American Heart Association Career Development
Department of Defense-Congressionally Directed Medical Research Programs
UCLA-Children's Discovery Institute and Today and Tomorrow Children's Fund
David Geffen School of Medicine Cardiovascular Theme Research Innovation Seed
National Heart, Lung, and Blood Institute
Publisher
Cold Spring Harbor Laboratory
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献