Integrated analysis of directly captured microRNA targets reveals the impact of microRNAs on mammalian transcriptome

Author:

Bjerke Glen A.,Yi RuiORCID

Abstract

MicroRNA (miRNA)-mediated regulation is widespread, relatively mild but functionally important. It remains challenging to unequivocally identify miRNA targeted RNAs at a genomic scale and determine how changes in miRNA levels affect the transcriptome. Here, we captured individual miRNAs and their targeted RNA sites in wild-type, miR-200 family knockout and induced epithelial cells. We detected 1797 miRNAs interacting with 13,830 transcripts at 616,127 sites by sequencing 1,230,019 unique miRNA:RNA chimeras. Although mRNA sites that are bound by miRNAs and contain matches to seed sequences confer the strongest regulation, ∼40%–60% of miRNA bound regions do not contain seed matches. Different miRNAs have different preferences to seed matches and 3′ end base-pairing. For individual miRNAs, the effectiveness of mRNA regulation is highly correlated with the number of captured miRNA:mRNA chimeras. Notably, elevated miR-200 expression robustly represses existing targets with little impact on newly recognized targets. Global analysis of directly captured mRNA targets reveals pathways that are involved in cancer and cell adhesion and signaling pathways that are highly regulated by many different miRNAs in epithelial cells. Comparison between experimentally captured and TargetScan predicted targets indicates that our approach is more effective in identifying bona fide targets by reducing false positive and negative predictions. This study reveals the global binding landscape and impact of miRNAs on the mammalian transcriptome.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health

National Institutes of Health

American Cancer Society postdoctoral fellowship

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3