µIVC-Useq: a microfluidic-assisted high-throughput functional screening in tandem with next-generation sequencing and artificial neural network to rapidly characterize RNA molecules

Author:

Cubi RogerORCID,Bouhedda FarahORCID,Collot Mayeul,Klymchenko Andrey S.ORCID,Ryckelynck MichaelORCID

Abstract

The function of an RNA is intimately linked to its structure. Many approaches encompassing X-ray crystallography, NMR, structural probing, or in silico predictions have been developed to establish structural models, sometimes with a precision down to atomic resolution. Yet these models still require experimental validation through the preparation and functional assay of mutants, which can rapidly become time consuming and laborious. Such limitations can be overcome using high-throughput functional screenings that may not only help in validating the model, but also inform on the mutational robustness of a structural element and the extent to which a sequence can be modified without altering RNA function, an important set of information to assist RNA engineering. We introduced the microfluidic-assisted in vitro compartmentalization (µIVC), an efficient and cost-effective screening strategy in which reactions are performed in picoliter droplets at rates of several thousand per second. We later improved µIVC efficiency by using it in tandem with high-throughput sequencing, though a laborious bioinformatic step was still required at the end of the process. In the present work, we further increased the automation level of the pipeline by implementing an artificial neural network enabling unsupervised bioinformatic analysis. We demonstrate the efficiency of this “µIVC-Useq” technology by rapidly identifying a set of sequences readily accepted by a key domain of the light-up RNA aptamer SRB-2. This work not only shed some new light on the way this aptamer can be engineered, but it also allowed us to easily identify new variants with an up to 10-fold improved performance.

Funder

University of Strasbourg Institute of Advanced Study (USIAS, program Translatomix) and Agence Nationale de la Recherche

Interdisciplinary Thematic Institute “IMCBio

University of Strasbourg, CNRS and Inserm, was supported by IdEx Unistra

SFRI-STRAT'US project, and EUR IMCBio

Centre National de la Recherche Scientifique and the Université de Strasbourg whom it received support from its Initiative of Excellence

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3