Eighty routes to a ribonucleotide world; dispersion and stringency in the decisive selection

Author:

Yarus MichaelORCID

Abstract

We examine the initial emergence of genetics; that is, of an inherited chemical capability. The crucial actors are ribonucleotides, occasionally meeting in a prebiotic landscape. Previous work identified six influential variables during such random ribonucleotide pooling. Geochemical pools can be in periodic danger (e.g., from tides) or constant danger (e.g., from unfavorable weather). Such pools receive Gaussian nucleotide amounts sporadically, at random times, or get varying substrates simultaneously. Pools use cross-templated RNA synthesis (5′–5′ product from 5′–3′ template) or para-templated (5′–5′ product from 5′–5′ template) synthesis. Pools can undergo mild or strong selection, and be recently initiated (early) or late in age. Considering >80 combinations of these variables, selection calculations identify a superior route. Most likely, an early, sporadically fed, cross-templating pool in constant danger, receiving ≥1 mM nucleotides while under strong selection for a coenzyme-like product, will host selection of the first encoded biochemical functions. Predominantly templated products emerge from a critical event, the starting bloc selection, which exploits inevitable differences among early pools. Favorable selection has a simple rationale; it is increased by product dispersion (SD/mean), by selection intensity (mild or strong), or by combining these factors as stringency, reciprocal fraction of pools selected (1/sfsel). To summarize: chance utility, acting via a preference for disperse, templated coenzyme-like dinucleotides, uses stringent starting bloc selection to quickly establish majority encoded/genetic expression. Despite its computational origin, starting bloc selection is largely independent of specialized assumptions. This ribodinucleotide route to inheritance may also have facilitated 5′–3′ chemical RNA replication.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Reference34 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3