Analysis and classification of RNA tertiary structures

Author:

Abraham Mira,Dror Oranit,Nussinov Ruth,Wolfson Haim J.

Abstract

There is a fast growing interest in noncoding RNA transcripts. These transcripts are not translated into proteins, but play essential roles in many cellular and pathological processes. Recent efforts toward comprehension of their function has led to a substantial increase in both the number and the size of solved RNA structures. With the aim of addressing questions relating to RNA structural diversity, we examined RNA conservation at three structural levels: primary, secondary, and tertiary structure. Additionally, we developed an automated method for classifying RNA structures based on spatial (three-dimensional [3D]) similarity. Applying the method to all solved RNA structures resulted in a classified database of RNA tertiary structures (DARTS). DARTS embodies 1333 solved RNA structures classified into 94 clusters. The classification is hierarchical, reflecting the structural relationship between and within clusters. We also developed an application for searching DARTS with a new structure. The search is fast and its performance was successfully tested on all solved RNA structures since the creation of DARTS. A user-friendly interface for both the database and the search application is available online. We show intracluster and intercluster similarities in DARTS and demonstrate the usefulness of the search application. The analysis reveals the current structural repertoire of RNA and exposes common global folds and local tertiary motifs. Further study of these conserved substructures may suggest possible RNA domains and building blocks. This should be beneficial for structure prediction and for gaining insights into structure–function relationships.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3