Dynamic mechanisms for pre-miRNA binding and export by Exportin-5

Author:

Wang Xia,Xu Xue,Ma Zhi,Huo Yingqiu,Xiao Zhengtao,Li Yan,Wang Yonghua

Abstract

The biogenesis and function of mature microRNAs (miRNAs) is dependent on the nuclear export of miRNA precursors (pre-miRNA) by Exportin-5 (Exp5). To characterize the molecular mechanisms of how pre-miRNA is recognized and transported by Exp5, we have performed 21 molecular dynamic (MD) simulations of RNA-bound Exp5 (Exp5–RanGTP–premiRNA, Exp5–RanGDP–premiRNA, Exp5–premiRNA), RNA-unbound Exp5 (Exp5–RanGTP, Exp5–RanGDP, apo–Exp5), and pre-miRNA. Our simulations with standard MD, steered molecular dynamics (SMD), and energy analysis have shown that (1) Free Exp5 undergoes extensive opening motion, and in this way facilitates the RanGTP binding. (2) RanGTP efficiently regulates the association/dissociation of pre-miRNA to its complex by inducing conformational changes in the HEAT-repeat helix stacking of Exp5. (3) The GTP hydrolysis prevents Ran from rebinding to Exp5 by regulating the hydrophobic interfaces and salt bridges between Ran and Exp5. (4) The transition from the A′-form to the A-form of the pre-miRNA modulates the structural complementarities between the protein and the pre-miRNA, thus promoting efficient assembly of the complex. (5) The base-flipping process (from the closed to the fully flipped state) of the 2-nt 3′ overhang is a prerequisite for the pre-miRNA recognition by Exp5, which occurs in a sequence-independent manner as evidenced by the fact that different 2-nt 3′ overhangs bind to Exp5 in essentially the same way. And finally, a plausible mechanism of the pre-miRNA export cycle has been proposed explaining how the protein–protein and protein–RNA interactions are coordinated in physiological conditions.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3