A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1- and Staufen2-containing ribonucleoprotein complexes

Author:

Furic Luc,Maher-Laporte Marjolaine,DesGroseillers Luc

Abstract

Messenger RNAs are associated with multiple RNA-binding proteins to form ribonucleoprotein (mRNP) complexes. These proteins are important regulators of the fate of their target mRNAs. In human cells, Staufen1 and Staufen2 proteins, coded by two different genes, are double-stranded RNA-binding proteins involved in several cellular functions including mRNA localization, translation, and decay. Although 51% identical, these proteins are nevertheless found in different RNA particles. In addition, differential splicing events generate Staufen2 isoforms that only differ at their N-terminal extremities. In this paper, we used a genome-wide approach to identify and compare the mRNA targets of mammalian Staufen proteins. The mRNA content of Staufen mRNPs was identified by probing DNA microarrays with probes derived from mRNAs isolated from immunopurified Staufen-containing complexes following transfection of HEK293T cells with Stau155-HA, Stau259-HA, or Stau262-HA expressors. Our results indicate that 7% and 11% of the cellular RNAs expressed in HEK293T cells are found in Stau1- and in Stau2-containing mRNPs, respectively. A comparison of Stau1- and Stau2-containing mRNAs identifies a relatively low percentage of common mRNAs; the percentage of common mRNAs highly increases when mRNAs in Stau259-HA- and Stau262-containing mRNPs are compared. There is a predominance of mRNAs involved in cell metabolism, transport, transcription, regulation of cell processes, and catalytic activity. All these subsets of mRNAs are mostly distinct from those associated with FMRP or IMP, although some mRNAs overlap. Consistent with a model of post-transcriptionnal gene regulation, our results show that Stau1- and Stau2-mRNPs associate with distinct but overlapping sets of cellular mRNAs.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3