Premature termination codons do not affect the rate of splicing of neighboring introns

Author:

LYTLE J. ROBIN,STEITZ JOAN A.

Abstract

Introduction of a premature termination codon (PTC) into an exon of a gene can lead to nonsense-mediated decay of the mRNA, which is best characterized as a cytoplasmic event. However, increasing evidence has suggested that PTCs may also influence the nuclear processing of an RNA transcript, leading to models of nuclear surveillance perhaps involving translating nuclear ribosomes. We used quantitative RT-PCR to measure the in vivo steady-state levels of every exon-intron junction in wild-type, PTC-containing, and missense-containing precursor mRNAs of both the nonrearranging dihydrofolate reductase (DHFR) and the somatically rearranging Ig-μ genes. We find that each exon-intron junction’s abundance and, therefore, the rate of intron removal, is not significantly affected by the presence of a PTC in a neighboring exon in either the DHFR or Ig-μ pre-mRNA. Similarly, the abundance of the uncleaved Ig-μ polyadenylation sites does not differ between wild-type and PTC-containing Ig-μ pre-mRNAs. Our Ig-μ data were confirmed by RNase protection analyses, and multiple cell isolates were examined to resolve differences with previously published data on steady-state pre-mRNA levels. We conclude that the presence of a PTC affects the rate of neither splicing nor the cleavage step of 3′ end formation during pre-mRNA processing in the nucleus. Our results are discussed with respect to existing evidence for nuclear surveillance mechanisms.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3