In silico survey of the central conserved regions in viroids of the Pospiviroidae family for conserved asymmetric loop structures

Author:

Freidhoff Paul,Bruist Michael F.

Abstract

Viroids are the smallest replicative pathogens, consisting of RNA circles (∼300 nucleotides) that require host machinery to replicate. Structural RNA elements recruit these host factors. Currently, many of these structural elements and the nature of their interactions are unknown. All Pospiviroidae have homology in the central conserved region (CCR). The CCR of potato spindle tuber viroid (PSTVd) contains a sarcin/ricin domain (SRD), the only viroid structural element with an unequivocal replication role. We assumed that every member of this family uses this region to recruit host factors, and that each CCR has an SRD-like asymmetric loop within it. Potential SRD or SRD-like motifs were sought in the CCR of each Pospiviroidae member as follows. Motif location in each CCR was predicted with MUSCLE alignment and Vienna RNAfold. Viroid-specific models of SRD-like motifs were built by superimposing noncanonical base pairs and nucleotides on a model of an SRD. The RNA geometry search engine FR3D was then used to find nucleotide groups close to the geometry suggested by this superimposition. Atomic resolution structures were assembled using the molecular visualization program Chimera, and the stability of each motif was assessed with molecular dynamics (MD). Some models required a protonated cytosine. To be stable within a cell, the pKa of that cytosine must be shifted up. Constant pH-replica exchange MD analysis showed such a shift in the proposed structures. These data show that every Pospiviroidae member could form a motif that resembles an SRD in its CCR, and imply there could be undiscovered mimics of other RNA domains.

Funder

University of the Sciences Department of Chemistry and Biochemistry

Robert D. Spiers Graduate Research Fellowship

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Reference88 articles.

1. Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation

2. Ultraviolet light-induced crosslinking reveals a unique region of local tertiary structure in potato spindle tuber viroid and HeLa 5S RNA.

3. Calladine C , Drew H , Luisi B , Travers A . 2004. Understanding DNA, 3rd ed. Academic Press, MA.

4. The Amber biomolecular simulation programs

5. Case DA , Babin V , Berryman JT , Betz RM , Cai Q , Cerutti DS , Cheatham TE III , Darden TA , Duke RE , Gohlke H , 2014. AMBER 14. University of California, San Francisco. http://ambermd.org/Manuals.php

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3