Author:
Cox Erica Machlin,Sagan Selena M.,Mortimer Stefanie A.W.,Doudna Jennifer A.,Sarnow Peter
Abstract
The hepatitis C viral RNA genome forms a complex with liver-specific microRNA (miR-122) at the extreme 5′ end of the viral RNA. This complex is essential to stabilize the viral RNA in infected cultured cells and in the liver of humans. The abundances of primary and precursor forms of miR-122, but not the abundance of mature miR-122, are regulated in a circadian rhythm in the liver of animals, suggesting a possible independent function of precursor molecules of miR-122 in regulating viral gene expression. Modified precursor molecules of miR-122 were synthesized that were refractory to cleavage by Dicer. These molecules were found to enhance the abundance of HCV RNA. Furthermore, they diminished the expression of mRNAs that contained binding sites for miR-122 in their 3′ noncoding regions. By use of duplex and precursor miR-122 mimetic molecules that carried mutations in the passenger strand of miR-122, the effects on viral and reporter gene expression could be pinpointed to the action of precursor miR-122 molecules. Targeting the circadian expression of precursor miR-122 by specific compounds likely provides novel therapeutic strategies.
Publisher
Cold Spring Harbor Laboratory
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献