Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols

Author:

Zhao Shanrong,Ye Zhan,Stanton Robert

Abstract

In recent years, RNA-sequencing (RNA-seq) has emerged as a powerful technology for transcriptome profiling. For a given gene, the number of mapped reads is not only dependent on its expression level and gene length, but also the sequencing depth. To normalize these dependencies, RPKM (reads per kilobase of transcript per million reads mapped) and TPM (transcripts per million) are used to measure gene or transcript expression levels. A common misconception is that RPKM and TPM values are already normalized, and thus should be comparable across samples or RNA-seq projects. However, RPKM and TPM represent the relative abundance of a transcript among a population of sequenced transcripts, and therefore depend on the composition of the RNA population in a sample. Quite often, it is reasonable to assume that total RNA concentration and distributions are very close across compared samples. Nevertheless, the sequenced RNA repertoires may differ significantly under different experimental conditions and/or across sequencing protocols; thus, the proportion of gene expression is not directly comparable in such cases. In this review, we illustrate typical scenarios in which RPKM and TPM are misused, unintentionally, and hope to raise scientists’ awareness of this issue when comparing them across samples or different sequencing protocols.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3