Generation of a newAdar1p150/mouse demonstrates isoform-specific roles in embryonic development and adult homeostasis

Author:

Liang ZhenORCID,Goradia Ankita,Walkley Carl R.ORCID,Heraud-Farlow Jacki E.ORCID

Abstract

The RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is an essential regulator of the innate immune response to both cellular and viral double-stranded RNA (dsRNA). Adenosine-to-inosine (A-to-I) editing by ADAR1 modifies the sequence and structure of endogenous dsRNA and masks it from the cytoplasmic dsRNA sensor melanoma differentiation-associated protein 5 (MDA5), preventing innate immune activation. Loss-of-function mutations inADARare associated with rare autoinflammatory disorders including Aicardi–Goutières syndrome (AGS), defined by a constitutive systemic up-regulation of type I interferon (IFN). The murineAdargene encodes two protein isoforms with distinct functions: ADAR1p110 is constitutively expressed and localizes to the nucleus, whereas ADAR1p150 is primarily cytoplasmic and is inducible by IFN. Recent studies have demonstrated the critical requirement for ADAR1p150 to suppress innate immune activation by self dsRNAs. However, detailed in vivo characterization of the role of ADAR1p150 during development and in adult mice is lacking. We identified a new ADAR1p150-specific knockout mouse mutant based on a single nucleotide deletion that resulted in the loss of the ADAR1p150 protein without affecting ADAR1p110 expression. TheAdar1p150/died embryonically at E11.5–E12.5 accompanied by cell death in the fetal liver and an activated IFN response. Somatic loss of ADAR1p150 in adults was lethal and caused rapid hematopoietic failure, demonstrating an ongoing requirement for ADAR1p150 in vivo. The generation and characterization of this mouse model demonstrates the essential role of ADAR1p150 in vivo and provides a new tool for dissecting the functional differences between ADAR1 isoforms and their physiological contributions.

Funder

National Health and Medical Research Council

The University of Melbourne

5point Foundation

Victorian State Government Operational Infrastructure Support Scheme

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3