Evolving specificity of tRNA 3-methyl-cytidine-32 (m3C32) modification: a subset of tRNAsSer requires N6-isopentenylation of A37

Author:

Arimbasseri Aneeshkumar G.,Iben James,Wei Fan-Yan,Rijal Keshab,Tomizawa Kazuhito,Hafner Markus,Maraia Richard J.

Abstract

Post-transcriptional modifications of anticodon loop (ACL) nucleotides impact tRNA structure, affinity for the ribosome, and decoding activity, and these activities can be fine-tuned by interactions between nucleobases on either side of the anticodon. A recently discovered ACL modification circuit involving positions 32, 34, and 37 is disrupted by a human disease-associated mutation to the gene encoding a tRNA modification enzyme. We used tRNA-HydroSeq (-HySeq) to examine 3methyl-cytidine-32 (m3C32), which is found in yeast only in the ACLs of tRNAsSer and tRNAsThr. In contrast to that reported for Saccharomyces cerevisiae in which all m3C32 depends on a single gene, TRM140, the m3C32 of tRNAsSer and tRNAsThr of the fission yeast S. pombe, are each dependent on one of two related genes, trm140+ and trm141+, homologs of which are found in higher eukaryotes. Interestingly, mammals and other vertebrates contain a third homolog and also contain m3C at new sites, positions 32 on tRNAsArg and C47:3 in the variable arm of tRNAsSer. More significantly, by examining S. pombe mutants deficient for other modifications, we found that m3C32 on the three tRNAsSer that contain anticodon base A36, requires N6-isopentenyl modification of A37 (i6A37). This new C32–A37 ACL circuitry indicates that i6A37 is a pre- or corequisite for m3C32 on these tRNAs. Examination of the tRNA database suggests that such circuitry may be more expansive than observed here. The results emphasize two contemporary themes, that tRNA modifications are interconnected, and that some specific modifications on tRNAs of the same anticodon identity are species-specific.

Funder

Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Institute of Arthritis and Musculoskeletal and Skin Diseases

National Institutes of Health

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3