tRNATyrhas an unusually short half-life inTrypanosoma brucei

Author:

Silveira d'Almeida Gabriel,Casius AnanthORCID,Henderson Jeremy C.,Knuesel Sebastian,Aphasizhev RuslanORCID,Aphasizheva InnaORCID,Manning Aidan C.ORCID,Lowe Todd M.,Alfonzo Juan D.

Abstract

Following transcription, tRNAs undergo a series of processing and modification events to become functional adaptors in protein synthesis. Eukaryotes have also evolved intracellular transport systems whereby nucleus-encoded tRNAs may travel out and into the nucleus. In trypanosomes, nearly all tRNAs are also imported from the cytoplasm into the mitochondrion, which lacks tRNA genes. Differential subcellular localization of the cytoplasmic splicing machinery and a nuclear enzyme responsible for queuosine modification at the anticodon “wobble” position appear to be important quality control mechanisms for tRNATyr, the only intron-containing tRNA inT. brucei. Since tRNA-guanine transglycosylase (TGT), the enzyme responsible for Q formation, cannot act on an intron-containing tRNA, retrograde nuclear transport is an essential step in maturation. Unlike maturation/processing pathways, the general mechanisms of tRNA stabilization and degradation inT. bruceiare poorly understood. Using a combination of cellular and molecular approaches, we show that tRNATyrhas an unusually short half-life. tRNATyr, and in addition tRNAAsp, also show the presence of slow-migrating bands during electrophoresis; we term these conformers: alt-tRNATyrand alt-tRNAAsp, respectively. Although we do not know the chemical or structural nature of these conformers, alt-tRNATyrhas a short half-life resembling that of tRNATyr; the same is not true for alt-tRNAAsp. We also show that RRP44, which is usually an exosome subunit in other organisms, is involved in tRNA degradation of the only intron-containing tRNA inT. bruceiand is partly responsible for its unusually short half-life.

Funder

National Institutes of Health

National Human Genome Research Institute, National Institutes of Health

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3