Genome 3′-end repair in dengue virus type 2

Author:

Teramoto Tadahisa,Kohno Yukari,Mattoo Pravina,Markoff Lewis,Falgout Barry,Padmanabhan Radhakrishnan

Abstract

Genomes of RNA viruses encounter a continual threat from host cellular ribonucleases. Therefore, viruses have evolved mechanisms to protect the integrity of their genomes. To study the mechanism of 3′-end repair in dengue virus-2 in mammalian cells, a series of 3′-end deletions in the genome were evaluated for virus replication by detection of viral antigen NS1 and by sequence analysis. Limited deletions did not cause any delay in the detection of NS1 within 5 d. However, deletions of 7–10 nucleotides caused a delay of 9 d in the detection of NS1. Sequence analysis of RNAs from recovered viruses showed that at early times, virus progenies evolved through RNA molecules of heterogeneous lengths and nucleotide sequences at the 3′ end, suggesting a possible role for terminal nucleotidyl transferase activity of the viral polymerase (NS5). However, this diversity gradually diminished and consensus sequences emerged. Template activities of 3′-end mutants in the synthesis of negative-strand RNA in vitro by purified NS5 correlate well with the abilities of mutant RNAs to repair and produce virus progenies. Using the Mfold program for RNA structure prediction, we show that if the 3′ stem–loop (3′ SL) structure was abrogated by mutations, viruses eventually restored the 3′ SL structure. Taken together, these results favor a two-step repair process: non-template-based nucleotide addition followed by evolutionary selection of 3′-end sequences based on the best-fit RNA structure that can support viral replication.

Publisher

Cold Spring Harbor Laboratory

Subject

Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3