Segmentation of renal structures based on contrast computed tomography scans using a convolutional neural network

Author:

Chernenkiy I. М.1ORCID,Chernenkiy M. M.1ORCID,Fiev D. N.1ORCID,Sirota E. S.1ORCID

Affiliation:

1. Sechenov First Moscow State Medical University (Sechenov University)

Abstract

   Aim. Develop a neural network to build 3D models of kidney neoplasms and adjacent structures.   Materials and methods. DICOM data (Digital Imaging and Communications in Medicine standard) from 41 patients with kidney neoplasms were used. Data included all phases of contrast-enhanced multispiral computed tomography. We split the data: 32 observations for the training set and 9 – for the validation set. At the labeling stage, the arterial, venous, and excretory phases were taken, affine registration was performed to jointly match the location of the kidneys, and noise was removed using a median filter and a non-local means filter. Then the masks of arteries, veins, ureters, kidney parenchyma and kidney neoplasms were marked. The model was the SegResNet architecture. To assess the quality of segmentation, the Dice score was compared with the AHNet, DynUNet models and with three variants of the nnU-Net (lowres, fullres, cascade) model.   Results. On the validation subset, the values of the Dice score of the SegResNet architecture were: 0.89 for the normal parenchyma of the kidney, 0.58 for the kidney neoplasms, 0.86 for arteries, 0.80 for veins, 0.80 for ureters. The mean values of the Dice score for SegResNet, AHNet and DynUNet were 0.79; 0.67; and 0.75, respectively. When compared with the nnU-Net model, the Dice score was greater for the kidney parenchyma in SegResNet – 0.89 compared to three model variants: lowres – 0.69, fullres – 0.70, cascade – 0.69. At the same time, for the neoplasms of the parenchyma of the kidney, the Dice score was comparable: for SegResNet – 0.58, for nnU-Net fullres – 0.59; lowres and cascade had lower Dice score of 0.37 and 0.45, respectively.   Conclusion. The resulting SegResNet neural network finds vessels and parenchyma well. Kidney neoplasms are more difficult to determine, possibly due to their small size and the presence of false alarms in the network. It is planned to increase the sample size to 300 observations and use post-processing operations to improve the model.

Publisher

Sechenov University

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3