Author:
Restuputri Dian,Fatimah Siti,Mubin Ahmad
Abstract
ATC (Air Traffic Control) is considered one of the most demanding jobs. This profession is considered a job with high mental workload due to its high-stress level and great responsibility. This study designed a suitable work system to improve operator performance by measuring the mental workload and the physical environment using the NASA-TLX method and safety concept by considering variables affecting the operator’s performance. This study also searched for the impact of mental workload on the work environment, the mental workload on performance, and the work environment on performance. Questionnaires were distributed to operators, and validation and verification tests were carried out using SPSS. At the PLS method's processing stage, the variables used in this study consisted of the dependent (Y) and independent (X) variables. The dependent variables in this study were performance and the physical environment of work of the operator. Meanwhile, the independent variable was mental workload. Based on the mental load calculation, an average WWL (weighted workload) score of 80 to 90 was obtained, and the factors affecting mental workload are performance aspects and mental demand. Based on the results of structural modelling with the PLS method, there was a significant influence between mental workload on the work environment, the mental workload on performance and the work environment on operator performance. The proposed work system design used an ergonomic approach, safety and regulation of Ministry of Health to get an ergonomic work system, regulate the equal distribution of workloads, create a safe and comfortable working environment, and improve operator performance. The design focused on the ATC tower's workstations and work environments. Supervisor has accepted the design.
Subject
Applied Mathematics,General Mathematics
Reference77 articles.
1. R. Bentley, J. A. Hughes, D. Randall, and D. Z. Shapiro, ‘Technological support for decision making in a safety critical environment’, Saf. Sci., vol. 19, no. 2, pp. 149–156, 1995, doi: https://doi.org/10.1016/0925-7535(94)00016-V.
2. G. Costa, Occupational stress and stress prevention in air traffic control. International Labour Office Geneva, 1996, [Online]. Available: http://www.oit.org/wcmsp5/groups/public/---ed_protect/---protrav/---safework/documents/publication/.
3. F. Trapsilawati, M. K. Herliansyah, A. S. A. N. S. Nugraheni, M. P. Fatikasari, and G. Tissamodie, ‘EEG-Based Analysis of Air Traffic Conflict: Investigating Controllers’ Situation Awareness, Stress Level and Brain Activity during Conflict Resolution’, J. Navig., vol. 73, no. 3, pp. 678–696, 2020, doi: https://doi.org/10.1017/S0373463319000882.
4. K. Brumels and A. Beach, ‘Professional Role Complexity and Job Satisfaction of Collegiate Certified Athletic Trainers’, J. Athl. Train., vol. 43, no. 4, pp. 373–378, Jul. 2008, doi: https://doi.org/10.4085/1062-6050-43.4.373.
5. S. Folkard, ‘Black times: Temporal determinants of transport safety’, Accid. Anal. Prev., vol. 29, no. 4, pp. 417–430, 1997, doi: https://doi.org/10.1016/S0001-4575(97)00021-3.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Physiologically-Driven Audiovisual Changes in Virtual Reality Radiation Source Location;2024 IEEE 12th International Conference on Serious Games and Applications for Health (SeGAH);2024-08-07