Instruments, Randomization, and Learning about Development

Author:

Deaton Angus1

Affiliation:

1. Princeton University.

Abstract

There is currently much debate about the effectiveness of foreign aid and about what kind of projects can engender economic development. There is skepticism about the ability of econometric analysis to resolve these issues or of development agencies to learn from their own experience. In response, there is increasing use in development economics of randomized controlled trials (RCTs) to accumulate credible knowledge of what works, without overreliance on questionable theory or statistical methods. When RCTs are not possible, the proponents of these methods advocate quasi-randomization through instrumental variable (IV) techniques or natural experiments. I argue that many of these applications are unlikely to recover quantities that are useful for policy or understanding: two key issues are the misunderstanding of exogeneity and the handling of heterogeneity. I illustrate from the literature on aid and growth. Actual randomization faces similar problems as does quasi-randomization, notwithstanding rhetoric to the contrary. I argue that experiments have no special ability to produce more credible knowledge than other methods, and that actual experiments are frequently subject to practical problems that undermine any claims to statistical or epistemic superiority. I illustrate using prominent experiments in development and elsewhere. As with IV methods, RCT-based evaluation of projects, without guidance from an understanding of underlying mechanisms, is unlikely to lead to scientific progress in the understanding of economic development. I welcome recent trends in development experimentation away from the evaluation of projects and toward the evaluation of theoretical mechanisms. (JEL C21, F35, O19)

Publisher

American Economic Association

Subject

Economics and Econometrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3