Networks in the Understanding of Economic Behaviors

Author:

Jackson Matthew O.1

Affiliation:

1. Matthew O. Jackson is the William D. Eberle Professor of Economics at Stanford University, Stanford, California. He is also a Senior Fellow of the Canadian Institute for Advanced Research, Toronto, Ontario, Canada, and an external faculty member of the Santa Fe Institute, Santa Fe, New Mexico. His email address is .

Abstract

As economists endeavor to build better models of human behavior, they cannot ignore that humans are fundamentally a social species with interaction patterns that shape their behaviors. People's opinions, which products they buy, whether they invest in education, become criminals, and so forth, are all influenced by friends and acquaintances. Ultimately, the full network of relationships—how dense it is, whether some groups are segregated, who sits in central positions—affects how information spreads and how people behave. Increased availability of data coupled with increased computing power allows us to analyze networks in economic settings in ways not previously possible. In this paper, I describe some of the ways in which networks are helping economists to model and understand behavior. I begin with an example that demonstrates the sorts of things that researchers can miss if they do not account for network patterns of interaction. Next I discuss a taxonomy of network properties and how they impact behaviors. Finally, I discuss the problem of developing tractable models of network formation.

Publisher

American Economic Association

Subject

Economics and Econometrics,Economics and Econometrics

Cited by 168 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Do high‐centrality CEOs influence audit outcomes?;Financial Markets, Institutions & Instruments;2024-09-09

2. Dynamic games on arbitrary networks with two types of players;Journal of Mathematical Economics;2024-08

3. A social network approach to community energy initiative participation;Energy Efficiency;2024-07-29

4. Personal Networks, Board Structures and Corporate Fraud in Japan;Journal of Risk and Financial Management;2024-07-23

5. Does digital literacy reduce the risk of returning to poverty? Evidence from China;Telecommunications Policy;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3