Expectations, Learning, and Business Cycle Fluctuations

Author:

Eusepi Stefano1,Preston Bruce2

Affiliation:

1. Macroeconomic and Monetary Studies Function, Federal Reserve Bank of New York, 33 Liberty St., New York NY 10045.

2. Department of Economics, Columbia University, New York NY 10027; Center for Applied Macroeconomic Analysis, Australian National University, Copland 2098, Canberra ACT 2601.

Abstract

This paper develops a theory of expectations-driven business cycles based on learning. Agents have incomplete knowledge about how market prices are determined and shifts in expectations of future prices affect dynamics. Learning breaks the tight link between fundamentals and equilibrium prices, inducing periods of erroneous optimism or pessimism about future returns to capital and wages which subsequent data partially validate. In a real business cycle model, the theoretical framework amplifies and propagates technology shocks. Moreover, it produces agents' forecast errors consistent with business cycle properties of forecast errors for a wide range of variables from the Survey of Professional Forecasters. JEL: C53, D83, D84, E32, E37

Publisher

American Economic Association

Subject

Economics and Econometrics

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The fiscal arithmetic of a slowdown in trend growth;European Economic Review;2024-09

2. Learning about the Long Run;Journal of Political Economy;2024-08-07

3. Expectations, Infections, and Economic Activity;Journal of Political Economy;2024-08-01

4. Tracking trend output using expectations data;Journal of the Royal Statistical Society Series A: Statistics in Society;2024-07-24

5. Are survey stock price forecasts anchored by fundamental forecasts? A long-run perspective;Economic Theory;2024-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3