Taking the Dogma out of Econometrics: Structural Modeling and Credible Inference

Author:

Nevo Aviv1,Whinston Michael D1

Affiliation:

1. Department of Economics, Northwestern University, Evanston, Illinois; National Bureau of Economic Research, Cambridge, Massachusetts.

Abstract

Without a doubt, there has been a “credibility revolution” in applied econometrics. One contributing development has been in the improvement and increased use in data analysis of “structural methods”; that is, the use of models based in economic theory. Structural modeling attempts to use data to identify the parameters of an underlying economic model, based on models of individual choice or aggregate relations derived from them. Structural estimation has a long tradition in economics, but better and larger data sets, more powerful computers, improved modeling methods, faster computational techniques, and new econometric methods such as those mentioned above have allowed researchers to make significant improvements. While Angrist and Pischke extol the successes of empirical work that estimates “treatment effects” based on actual or quasi-experiments, they are much less sanguine about structural analysis and hold industrial organization up as an example where “progress is less dramatic.” Indeed, reading their article one comes away with the impression that there is only a single way to conduct credible empirical analysis. This seems to us a very narrow and dogmatic approach to empirical work; credible analysis can come in many guises, both structural and nonstructural, and for some questions structural analysis offers important advantages. In this comment, we address the criticism of structural analysis and its use in industrial organization, and consider why empirical analysis in industrial organization differs in such striking ways from that in field such as labor, which have recently emphasized the methods favored by Angrist and Pischke.

Publisher

American Economic Association

Subject

Economics and Econometrics,Economics and Econometrics

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3