Optimal Information Disclosure in Classic Auctions

Author:

Bergemann Dirk1,Heumann Tibor2,Morris Stephen3,Sorokin Constantine4,Winter Eyal5

Affiliation:

1. Yale University (email: )

2. Pontificia Universidad Católica de Chile (email: )

3. Massachusetts Institute of Technology (email: )

4. Glasgow University and Higher School of Economics (email: )

5. Hebrew University of Jerusalem and Lancaster University (email: )

Abstract

We characterize the revenue-maximizing information structure in the second-price auction. The seller faces a trade-off: more information improves the efficiency of the allocation but creates higher information rents for bidders. The information disclosure policy that maximizes the revenue of the seller is to fully reveal low values (where competition is high) but to pool high values (where competition is low). The size of the pool is determined by a critical quantile that is independent of the distribution of values and only dependent on the number of bidders. We discuss how this policy provides a rationale for conflation in digital advertising. (JEL D44, D82, D83, M37)

Publisher

American Economic Association

Subject

Management, Monitoring, Policy and Law,Geography, Planning and Development

Reference27 articles.

1. Persuading Voters

2. Ashlagi, Itai, Faidra Monachou, and Afshin Nikzad. 2021. "Optimal Dynamic Allocation: Simplicity through Information Design." In EC '21: Proceedings of the 22nd ACM Conference on Economics and Computation, 101-102. New York: Association for Computing Machinery.

3. Bergemann, Dirk, Tibor Heumann, and Stephen Morris. 2021. "Selling Impressions: Ef ciency vs. Competition." Cowles Foundation Discussion Paper 2291.

4. Bergemann, Dirk, Tibor Heumann, Stephen Morris, Constantine Sorokin, and Eyal Winter. 2021. "Selling Impressions: Ef ciency vs. Competition." Cowles Foundation Discussion Paper 2300.

5. Information structures in optimal auctions

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Competition and Information Leakage;Journal of Political Economy;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3