Post-earthquake building services downtime distribution: a case study of the 2016 Kumamoto, Japan, earthquake

Author:

Nishino Tomoaki

Abstract

AbstractSeismic damage to building services systems, that is, mechanical, electrical, and plumbing systems in buildings related to energy and indoor environments, affects the functionality of buildings. Assessing post-earthquake functionality is useful for enhancing the seismic resilience of buildings via improved design. Such assessments require a model for predicting the time required to restore building services. This study analyzes the downtime data for 250 instances of damage to building services components caused by the 2016 Kumamoto earthquake in Japan, presumably obtained from buildings with minor or no structural damage. The objectives of this study are (1) to determine the empirical downtime distribution of building services components and (2) to assess the dependence of the downtime on explanatory variables. A survival analysis, which is a statistical technique for analyzing time-to-event data, reveals that (1) the median downtime of building services components was 90 days and, 7 months after the earthquake, the empirical non-restoration probability was approximately 32%, (2) the services type and the building use are explanatory variables having a statistically significant effect on the downtime of building services components, (3) the log-logistic regression model reasonably captures the trend of the restoration of building services components, (4) medical and welfare facilities and hotels restored building services components relatively quickly, and (5) the 7-month restoration probability was observed to be highest for electrical systems, followed by sanitary systems, then heating, ventilation, and air conditioning systems, and finally life safety systems. These results provide useful information to support the resilience-based seismic design of buildings.

Funder

An academia–industry collaborative research program involving Kyoto University, Tokyo Polytechnic University, Shimizu Corporation, and Ohsaki Research Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3