Author:
Ball Vincent L.,Younggren Bradley N.,Bothwell Jason D.
Abstract
Abstract
Objective
To evaluate emergency medicine residents’ ability to detect ocular pathology using portable ultrasound (US) in a live porcine model.
Methods
This was a pilot study to evaluate emergency medicine residents’ ability to accurately diagnose ocular pathology in a porcine model using handheld US. Subjects were emergency medicine residents who had all undergone a 2-day US course as part of their emergency medicine orientation month and had reviewed an 1 h self-instruction computer tutorial on ocular US prior to the study. Vitreous hemorrhages, retro-orbital hematomas and intraocular foreign bodies were simulated by placement of porcine blood and metallic objects under ultrasound guidance out of view of the subject population. Residents then performed self-directed US of two eyes each and were asked to comment on any pathology observed. Some residents were also asked to identify central retinal artery flow. Time required for each scan was noted.
Results
A total of 36 residents scanned 6 porcine eyes over 2 lab iterations. EM residents were able to detect a significant abnormality greater than 93% of the time. Vitreous hemorrhages were the most detectable injuries with 95% accuracy. A significant abnormality was detected in the models with intraocular foreign bodies 97% of the time with a clear diagnosis of foreign body noted in 73% of the cases. Retro-orbital hematoma was the most difficult to detect with 62% accuracy. The average time taken for scanning two eyes was 7 min 38 s. Central retinal artery flow was detected in 100% of the 26 cases in which this was documented. Accuracy of diagnoses was similar across levels of EM training.
Conclusion
EM residents can accurately diagnose significant ocular pathology using handheld US in a live porcine model.
Publisher
Springer Science and Business Media LLC
Subject
Radiological and Ultrasound Technology