Author:
Felder Giovanni,Rembado Gabriele
Abstract
AbstractWe give a mathematical definition of irregular conformal blocks in the genus-zero WZNW model for any simple Lie algebra, using coinvariants of modules for affine Lie algebras whose parameters match up with those of moduli spaces of irregular meromorphic connections: the open de Rham spaces. The Segal–Sugawara representation of the Virasoro algebra is used to show that the spaces of irregular conformal blocks assemble into a flat vector bundle over the space of isomonodromy times à la Klarès, and we provide a universal version of the resulting flat connection generalising the irregular KZ connection of Reshetikhin and the dynamical KZ connection of Felder–Markov–Tarasov–Varchenko.
Funder
Rheinische Friedrich-Wilhelms-Universität Bonn
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Mathematics
Reference56 articles.
1. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91(2), 167–197 (2010)
2. Arnol’d, V.I.: The cohomology ring of the group of dyed braids. Mat. Zametki 5, 227–231 (1969)
3. Baumann, P.: The q-Weyl group of a q-Schur algebra, hal-00143359
4. Belavin, A.A., Drinfel’d, V.G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funktsional. Anal. I Prilozhen. 16(3), 1–29 (1982)
5. Biquard, O., Boalch, P.P.: Wild nonabelian Hodge theory on curves. Compos. Math. 140(1), 179–204 (2004)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献