The $${\mathcal {H}}$$-tautological ring

Author:

Lian Carl

Abstract

AbstractWe extend the theory of tautological classes on moduli spaces of stable curves to the more general setting of moduli spaces of admissible Galois covers of curves, introducing the so-called $${\mathcal {H}}$$ H -tautological ring. The main new feature is the existence of restriction-corestriction morphisms remembering intermediate quotients of Galois covers, which are a rich source of new classes. In particular, our new framework includes classes of Harris–Mumford admissible covers on moduli spaces of curves, which are known in some (and speculatively many more) examples to lie outside the usual tautological ring. We give additive generators for the $${\mathcal {H}}$$ H -tautological ring and show that their intersections may be algorithmically computed, building on work of Schmitt-van Zelm. As an application, we give a method for computing integrals of Harris-Mumford loci against tautological classes of complementary dimension, recovering and giving a mild generalization of a recent quasi-modularity result of the author for covers of elliptic curves.

Funder

Humboldt-Universität zu Berlin

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Mathematics

Reference34 articles.

1. Abramovich, D., Corti, A., Vistoli, A.: Twisted bundles and admissible covers. Commun. Algebra 8, 3547–3618 (2003)

2. Aluffi, P.: Segre classes of monomial schemes. Electron. Res. Announc. Math. Sci. 20, 55–70 (2013)

3. Arbarello, E., Cornalba, M.: The Picard groups of the moduli spaces of curves. Topology 26, 153–171 (1987)

4. Arbarello, E.: Cornalba, Maurizio: Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves. J. Algebraic Geom. 5, 705–749 (1996)

5. Bertin, J., Romagny, M.: Champs de Hurwitz, Mém. Soc. Math. Fr., no. 125-126 (2011)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On orbifold Gromov–Witten classes;Portugaliae Mathematica;2022-11-09

2. Tevelev degrees and Hurwitz moduli spaces;Mathematical Proceedings of the Cambridge Philosophical Society;2021-12-03

3. Non-tautological Hurwitz cycles;Mathematische Zeitschrift;2021-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3